Abstract

The purpose of this paper is to provide a systematic discussion of a generalized barycenter based on a variant of unbalanced optimal transport (UOT) that defines a distance between general non-negative, finitely supported measures by allowing for mass creation and destruction modeled by some cost parameter. They are denoted as Kantorovich–Rubinstein (KR) barycenter and distance. In particular, we detail the influence of the cost parameter to structural properties of the KR barycenter and the KR distance. For the latter we highlight a closed form solution on ultra-metric trees. The support of such KR barycenters of finitely supported measures turns out to be finite in general and its structure to be explicitly specified by the support of the input measures. Additionally, we prove the existence of sparse KR barycenters and discuss potential computational approaches. The performance of the KR barycenter is compared to the OT barycenter on a multitude of synthetic datasets. We also consider barycenters based on the recently introduced Gaussian Hellinger–Kantorovich and Wasserstein–Fisher–Rao distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.