Abstract

BackgroundEndemic areas for soil-transmitted helminthiases often lack the tools and trained personnel necessary for point-of-care diagnosis. This study pilots the use of smartphone microscopy and an artificial neural network-based (ANN) object detection application named Kankanet to address those two needs.Methodology/Principal findingsA smartphone was equipped with a USB Video Class (UVC) microscope attachment and Kankanet, which was trained to recognize eggs of Ascaris lumbricoides, Trichuris trichiura, and hookworm using a dataset of 2,078 images. It was evaluated for interpretive accuracy based on 185 new images. Fecal samples were processed using Kato-Katz (KK), spontaneous sedimentation technique in tube (SSTT), and Merthiolate-Iodine-Formaldehyde (MIF) techniques. UVC imaging and ANN interpretation of these slides was compared to parasitologist interpretation of standard microscopy.Relative to a gold standard defined as any positive result from parasitologist reading of KK, SSTT, and MIF preparations through standard microscopy, parasitologists reading UVC imaging of SSTT achieved a comparable sensitivity (82.9%) and specificity (97.1%) in A. lumbricoides to standard KK interpretation (97.0% sensitivity, 96.0% specificity). The UVC could not accurately image T. trichiura or hookworm. Though Kankanet interpretation was not quite as sensitive as parasitologist interpretation, it still achieved high sensitivity for A. lumbricoides and hookworm (69.6% and 71.4%, respectively). Kankanet showed high sensitivity for T. trichiura in microscope images (100.0%), but low in UVC images (50.0%).Conclusions/SignificanceThe UVC achieved comparable sensitivity to standard microscopy with only A. lumbricoides. With further improvement of image resolution and magnification, UVC shows promise as a point-of-care imaging tool. In addition to smartphone microscopy, ANN-based object detection can be developed as a diagnostic aid. Though trained with a limited dataset, Kankanet accurately interprets both standard microscope and low-quality UVC images. Kankanet may achieve sensitivity comparable to parasitologists with continued expansion of the image database and improvement of machine learning technology.

Highlights

  • Soil-transmitted helminths (STH) such as Ascaris lumbricoides, hookworm, and Trichuris trichiura affect more than a billion people worldwide [1,2,3]

  • We demonstrated that an inexpensive, commercially available microscope attachment for smartphones could rival the sensitivity and specificity of a regular microscope using standard field fecal sample processing techniques

  • We developed an artificial neural network-based object detection Android application, called Kankanet, based on open-source programming libraries

Read more

Summary

Introduction

Soil-transmitted helminths (STH) such as Ascaris lumbricoides, hookworm, and Trichuris trichiura affect more than a billion people worldwide [1,2,3]. To diagnose STH in residents of rural areas, the present standard is the Kato-Katz technique (estimated sensitivity of 0.970 for A. lumbricoides, 0.650 for hookworm, and 0.910 for T. trichiura; estimated specificity of 0.960 for A. lumbricoides, 0.940 for hookworm, and 0.940 for T. trichiura) [5]. Spontaneous sedimentation technique in tube (SSTT) analysis has been found in preliminary studies to be not inferior to Kato-Katz in A. lumbricoides, T. trichiura, and hookworm [9,10]. Since it requires no special equipment and few materials, it has the potential to be a cost-effective stool sample processing method in the field.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call