Abstract

The topic of this paper is an evaluation of developed sensor intended for navigation aid of unmanned aerial vehicles (UAVs). Its operation is based on processing images acquired with a thermal camera operating in the long-wave infrared band (LWIR) placed underneath a vehicle’s chassis. The vehicle’s spatial displacement is determined by analyzing movement of characteristic thermal radiation points (ground, forest, buildings, etc.) in pictures acquired by the thermal camera. Magnitude and direction of displacement is obtained by processing the stream of consecutive pictures with optical-flow based algorithm in real time. Radiation distribution analysis allows to calculate camera’s self-translation vector. Advantages of measuring translation based on thermal image analysis is lack of drift effect, resistance to magnetic field variations, low susceptibility to electromagnetic interference and change in weather conditions as compared to traditional inertial navigation sensors. As opposed to visible light situational awareness sensors, it offers operation in complete darkness (harsh weather, nights and indoors).The topic of this paper is an evaluation of developed sensor intended for navigation aid of unmanned aerial vehicles (UAVs). Its operation is based on processing images acquired from a thermal camera operating in the long wave infrared band (LWIR) placed underneath a vehicle’s chassis. The vehicle’s spatial displacement is determined by analyzing movement of characteristic thermal radiation points (ground, forest, buildings, etc.) in pictures acquired by the thermal camera. Magnitude and direction of displacement is obtained by processing the stream of consecutive pictures with optical-flow based algorithm in real time. Radiation distribution analysis allows to calculate camera’s self-translation vector. Advantages of measuring translation based on thermal image analysis is lack of drift effect, resistance to magnetic field variations, low susceptibility to electromagnetic interference and change in weather conditions as compared to traditional inertial navigation sensors. As opposed to visible light situational awareness sensors, it offers operation in complete darkness (harsh weather, nights and indoors).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.