Abstract

In this paper we prove that an analog of the celebrated KAM theorem holds for symplectic algorithms, which Channel and Scovel (1990), Feng Kang (1991) and Sanz-Serna and Calvo (1994) suggested a few years ago. The main results consist of the existence of invariant tori, with a smooth foliation structure, of a symplectic numerical algorithm when it applies to a generic integrable Hamiltonian system if the system is analytic and the time-step size of the algorithm is s ufficiently small. This existence result also implies that the algorithm, when it is applied to a generic integrable system, possesses n independent smooth invariant functions which are in involution and well-defined on the set filled by the invariant tori in the sense of Whitney. The invariant tori are just the level sets of these functions. Some quantitative results about the numerical invariant tori of the algorithm approximating the exact ones of the system are also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call