Abstract

In this work we study constraints from new searches for heavy particles at the LHC on the allowed masses and couplings of a KK Graviton in a holographic composite Higgs model. Keeping new electroweak states heavy such that electroweak precision tests are satisfied, we control the mass of the lightest KK graviton using a brane kinetic term. With this we study KK graviton masses from 0.5-3 TeV. In our analysis we also employ Little Randall-Sundrum (RS) Models, characterised by a lower UV scale in the 5D model which in turn implies modified couplings to massless bulk fields. Viewing this scenario as a strongly coupled 4D theory with a composite Higgs boson, the KK graviton is interpreted as a composite spin-2 state and the varying UV scale corresponds to a varying intermediate scale between the cutoff of the low energy effective theory and the Planck scale. We find that KK gravitons with masses in the range 0.5-3 TeV are compatible with current collider constraints, where the most promising channels for detecting these states are the di-photon and ZZ channels. A detection is more likely in the little RS models, in which the dual gauge theory has a larger number of colours than in traditional RS models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.