Abstract

A generic prediction of scenarios with extra dimensions accessible in TeV-scale collisions is the existence of Kaluza-Klein excitations of the graviton. For a broad class of strongly-warped scenarios one expects to initially find an isolated resonance, whose phenomenology in the simplest cases is described by a simplified model with two parameters, its mass, and a constant $\Lambda$ with units of mass parameterizing its coupling to the Standard Model stress tensor. These parameters are in turn determined by the geometrical configuration of the warped compactification. We explore the possibility that the 750 GeV excess recently seen in 13 TeV data at ATLAS and CMS could be such a warped Kaluza-Klein graviton, and find a best-fit value $\Lambda\approx 60$ TeV. We find that while there is some tension between this interpretation and data from 8 TeV and from the dilepton channel at 13 TeV, it is not strongly excluded. However, in the simplest scenarios of this kind, such a signal should soon become apparent in both diphoton and dilepton channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call