Abstract

In a supersymmetric large extra dimension scenario, the production of Kaluza-Klein gravitinos accompanied by a photino at e^+ e^- colliders is studied. We assume that a bulk supersymmetry is softly broken on our brane such that the low-energy theory resembles the MSSM. Low energy supersymmetry breaking is further assumed as in GMSB, leading to sub-eV mass shift in each KK mode of the gravitino from the corresponding graviton KK mode. Since the photino decays within a detector due to its sufficiently large inclusive decay rate into a photon and a gravitino, the process e^+ e^- -> photino + gravitino yields single photon events with missing energy. Even if the total cross section can be substantial at sqrt(s)=500 GeV, the KK graviton background of e^+ e^- -> photon + graviton is kinematically advantageous and thus much larger. It is shown that the observable, sigma(e^-_L)-sigma(e^-_R), can completely eliminate the KK graviton background but retain most of the KK gravitino signal, which provides a unique and robust method to probe the supersymmetric bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call