Abstract

Pulp damage may occur because of the temperature rise during polymerization of light-cured dental materials. Aim: The purpose of this study was to evaluate three different curing modes of a light emitting diode (LED) on the temperature rise in the pulp chamber during polymerization of a light-cured resin-modified calcium silicate filled pulp-capping material. Material and Method: A straight-cut was made to the occlusal surface of an extracted molar ensuring 1 mm dentin thickness over the pulp. Pulpal circulation was simulated by water cycling through the pulp chamber with a defined flow pressure to simulate the clinical case. Temperature rise was measured during the light curing of capping material (Theracal, Bisco Inc.,USA). Three modes of light curing unit (Planmeca Lumion,Mectron,Italy) were used to polymerizate the material; fast (FP), slow rise (SRP) and soft (SP). Thermal changes were measured by a data-logger. The data were statistically analyzed by one-way ANOVA. Results: ANOVA test showed that pulp chamber temperature changes were influenced by the mode of light source. All groups showed significant differences between each other (P<0.05). The intrapulpal temperature changes induced by different modes were: (7.19±0.44°C) for FP, (6.62±0.34°C) for SRP, (6.10±0.37°C) for SP. Conclusion: Following conclusions were drawn; The intrapulpal temperature changes induced by various light modes were: FP, SRP and SP in descending order. All curing modes of light curing unit showed significant differences between each other. Light curing of the TheraCal with different polymerization modes of the same light unit resulted in more than 5.5°C increase in the pulp chamber

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call