Abstract

This paper addresses the problem to design control and performance monitoring systems for robotic manipulators. Basically three control schemes are proposed. The first one is a modification of the computed torque method where the input torques necessary to drive the robotic manipulator are on-line computed as functions of the optimal – unbiased, minimum variance – estimates of the joint coordinates and velocities, and the corrected accelerations. The optimal state estimator based on a stochastic discrete-time linear dynamic model and previous observations is generated the discrete Kalman filter. The idea of the second control system is to use a better reference trajectory for linearization in each working cycle. Two ways are given to perform this relinearization process: the relinearization is performed around the estimated trajectory, and the extended Kalman filter. The third novel control method addresses the problem to design a nonlinear feedback controller in case of uncertain dynamical parameters and other disturbances. Monitoring schemes for real-time detection and isolation of failures in robotic manipulators are outlined in the second part of the paper. The problem of fault detection is formulated as a problem in Hypothesis Testing by regarding the normal operation of the robot manipulator as the null hypothesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.