Abstract

The problem of solving the matrix Riccati differential equation in the design of Kalman filters for the target tracking problem is considered. An algebraic transformation method is used to reduce the order of the Riccati differential equation and to obtain explicit expressions for the filter gains (in terms of the interceptor /target separation range) which results in a substantial reduction of the computer burden involved in estimating the target states. The applicability of the transform technique is demonstrated for the receiver thermal noise and the target glint noise cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.