Abstract

In this paper we propose two real-time attack detection and secure state estimation algorithms, namely Rolling Window Detector (RWD) and Novel Residual Detector (NRD). These algorithms are basically developed based on Kalman state estimation. In the former, we present a statistical testing approach which is handled over a finite time horizon T to detect individual attacked sensors. The latter extends the X <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -detector to be able to detect individual compromised sensors. Both methods then will be employed together with a modified version of Kalman filter to perform a secure state estimation with a relatively low estimation error. Efficiency of the algorithms will be assessed in both unstealthy and stealthy scenarios. Productivity of the methods will be underlined in the stealthy case, which is of much more significance among cyber-security challenges. Simulation results on an IEEE 14-bus power grid test system along with a comprehensive comparison between the performance of RWD and NRD with a recently introduced tool, which is the only other method that tries to detect individual attacked sensors, proves the effectiveness of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.