Abstract
Point cloud densification is essential for understanding the 3D environment. It provides crucial structural and semantic information for downstream tasks such as 3D object detection and tracking. However, existing registration-based methods struggle with dynamic targets due to the incompleteness and deformation of point clouds. To address this challenge, we propose a Kalman-based scene flow estimation method for point cloud densification and 3D object detection in dynamic scenes. Our method effectively tackles the issue of localization errors in scene flow estimation and enhances the accuracy and precision of shape completion. Specifically, we introduce a Kalman filter to correct the dynamic target’s position while estimating long sequence scene flow. This approach helps eliminate the cumulative localization error during the scene flow estimation process. Extended experiments on the KITTI 3D tracking dataset demonstrate that our method significantly improves the performance of LiDAR-only detectors, achieving superior results compared to the baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.