Abstract

Bone homeostasis is maintained by a dynamic balance between bone formation and bone resorption. The cellular activities of osteoblasts and osteoclasts are the primary factors that maintain this dynamic balance. The transcription factor Kaiso has been identified as a regulator of cell proliferation and differentiation in various cells. However, research into its role in bone homeostasis is currently lacking. In the present study, cell and animal experiments were conducted to investigate the role of Kaiso in bone homeostasis. The present study identified that Kaiso was downregulated during osteoblast differentiation in MC3T3-E1 cells. Gain- and loss-of-function studies in MC3T3-E1 cells demonstrated that Kaiso served a critical role in osteoblast differentiation in vitro. The findings were further confirmed in vivo. The results of the sequence analysis indicated that Kaiso influenced osteoblast differentiation and mineralization by regulating the PI3K/AKT signaling pathway. Moreover, integrin subunit α10 (Itga10) was identified as a direct target of Kaiso via chromatin immunoprecipitation and luciferase reporter assays. Collectively, these findings suggested that Kaiso regulated the differentiation of osteoblasts via the Itga10/PI3K/AKT pathway, which represents a therapeutic target for bone formation or bone resorption-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.