Abstract

BackgroundPreviously, we found that interleukin (IL)-18 deficiency aggravates kainic acid (KA)-induced hippocampal neurodegeneration in young C57BL/6 mice due to an over-compensation by IL-12. Additionally, IL-18 participates in fundamental inflammatory processes that increase during aging. In the present study, we were interested in the role of IL-18 in KA-induced neurodegeneration in aged female C57BL/6 mice.MethodsFifteen aged female IL-18 knockout (KO) and 15 age-matched wild-type (WT) mice (18 to 19 months old) were treated with KA at a dose of 25 mg/kg body weight intranasally. Seizure activities and behavioral changes were rated using a 6-point scoring system and open-field test, respectively. Seven days after KA treatment, degenerating neurons were detected by Nissl's method and Fluoro-Jade B staining; and microglial activation was analyzed by immunohistochemistry and flow cytometry.ResultsAged female IL-18 KO and WT mice showed similar responses to treatment with KA as demonstrated by comparable seizure activities, behavioral changes and neuronal cell death. However, aged female IL-18 KO mice failed to exhibit the strong microglial activation shown in WT mice. Interestingly, even though the number of activated microglia was less in KA-treated IL-18 KO mice than in KA-treated WT mice, the proportion of microglia that expressed the cytokines tumor necrosis factor (TNF)-α, IL-6 and IL-10 was higher in KA-treated IL-18 KO mice.ConclusionDeficiency of IL-18 attenuates microglial activation after KA-induced excitotoxicity in aged brain, while the net effects of IL-18 deficiency are balanced by the enhancement of other cytokines, such as TNF-α, IL-6 and IL-10.

Highlights

  • We found that interleukin (IL)-18 deficiency aggravates kainic acid (KA)-induced hippocampal neurodegeneration in young C57BL/6 mice due to an over-compensation by IL-12

  • Deficiency of IL-18 attenuates microglial activation after KA-induced excitotoxicity in aged brain, while the net effects of IL-18 deficiency are balanced by the enhancement of other cytokines, such as tumor necrosis factor (TNF)-α, IL-6 and IL-10

  • Our results demonstrate that deficiency of IL-18 attenuates microglial activation after KAinduced excitotoxicity in aged brain

Read more

Summary

Introduction

We found that interleukin (IL)-18 deficiency aggravates kainic acid (KA)-induced hippocampal neurodegeneration in young C57BL/6 mice due to an over-compensation by IL-12. IL-18 participates in fundamental inflammatory processes that increase during aging. We were interested in the role of IL-18 in KA-induced neurodegeneration in aged female C57BL/6 mice. Administration of kainic acid (KA), an analog of the excitotoxin glutamate, to rodents results in neuronal death and seizures [1], which provides a well-characterized model for studies of human neurodegenerative diseases [2,3,4]. Synthesis and release of cytokines and other inflammatory factors by glial cells influence the survival and repair of hippocampal neurons after injury [5,6]. It has been suggested that IL-18 participates in fundamental inflammatory processes that increase during aging [14].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.