Abstract
We investigated the neuroprotective effects of lithium in an experimental neurodegeneration model gated to kainate (KA) receptor activation. The hippocampus from KA-treated mice and hippocampal cell cultures were used to evaluate the pathways regulated by chronic lithium pretreatment in both in vivo and in vitro models. Treatment with KA, as measured by fragmentation of alpha-spectrin and biochemically, induced the activation of calpain resulting in p35 cleavage to p25, indicating activation of cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3ss (GSK-3ss) and an increase in tau protein phosphorylation. Treatment with lithium reduced calpain activation and reduced the effects of cdk5 and GSK-3ss on tau. KA treatment of cultures resulted in neuronal demise. According to nuclear condensed cell counts, the addition of lithium to neuronal cell cultures (0.5-1 mM) a few days before KA treatment had neuroprotective and also antiapoptotic effects. The action of lithium on calpain/cdk5 and GSK-3ss pathways produced similar results in vivo. As calpain is activated by an increase in intracellular calcium, we showed that lithium reduced calcium concentrations in basal and KA-treated hippocampal cells, which was accompanied by an increase in NCX3, a Na+/Ca2+ exchanger pump. A robust neuroprotective effect of lithium in the excitotoxic process induced by KA in mouse hippocampus was demonstrated via modulation of calcium entry and the subsequent inhibition of the calpain pathway. These mechanisms may act in an additive way with other mechanisms previously described for lithium, suggesting that it may be useful as a possible therapeutic strategy for Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.