Abstract

The mechanisms underlying kainate (KA) neurotoxicity are still not well understood. We previously reported that KA-mediated neuronal damage in organotypic cultures of hippocampal slices was associated with p53 induction. Recently, both bax and caspase-3 have been demonstrated to be key components of the p53-dependent neuronal death pathway. Caspase activation has also been causally related to the release of mitochondrial cytochrome c (Cyto C) in the cytoplasm as a result of the collapse of the mitochondrial membrane potential (Δ ψ M) and the opening of mitochondrial permeability transition pores (mPTP). In the present study, we observed a rapid induction of bax in hippocampal slice cultures after KA treatment. In addition, the levels of Cyto C and caspase-3 were increased in the cytosol while the level of the caspase-9 precursor was decreased. There was also a complete reduction of Rhodamine 123 fluorescence after KA treatment, an indication of Δ ψ M dissipation. Furthermore, inhibition of mPTP opening by cyclosporin A partially prevented Cyto C release, caspase activation and neuronal death. These data suggest the involvement of bax, several caspases, as well as Cyto C release in KA-elicited neuronal death. Finally, inhibition of caspase-3 activity by z-VAD-fmk only partially protected neurons from KA toxicity, implying that multiple mechanisms may be involved in KA excitotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call