Abstract

Gustatory afferent fibers of the vagus nerve that innervate taste buds of the oropharynx of the goldfish, Carassius auratus, project to the vagal lobe, which is a laminated gustatory nucleus in the dorsal medulla. As in the mammalian gustatory system, responses by second-order cells in the goldfish medulla are mediated by N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors. We utilized a cobalt uptake technique to label vagal lobe neurons that possess cobalt-permeable ionotropic glutamate receptors. Vagal lobe slices were bathed in kainate (40 microM) or glutamate (0.5 or 1 mM) in the presence of CoCl(2), which can pass into cells through the ligand-gated cation channels of non-NMDA receptors made up of certain subunit combinations. Cobalt-filled cells and dendrites were observed in slices that were activated by kainate or glutamate, but not in control slices that were bathed in CoCl(2) alone, nor in slices that were bathed with the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (10 microM) in addition to an agonist. Likewise, simple depolarization of the cells with KCl failed to induce cobalt loading. Cobalt-filled round unipolar cells, elongate or globular bipolar cells, and multipolar cells with elongate or polygonal perikarya were distributed throughout the cell layers in the sensory zone of the vagal lobe. Numerous labeled neurons had dendrites spanning layers IV and VI, the two principal layers of primary afferent input. Apical and basal dendrites often extended radially through neighboring laminae, but many cells also extended dendrites tangential to the lamination of the sensory zone. In the motor layer, cell bodies and proximal dendrites of small, multipolar neurons, and large motoneurons were regularly loaded with cobalt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call