Abstract

Since the discovery of graphene, intensive efforts have been made in search of novel two-dimensional (2D) materials. Decreasing the materials dimensionality to their ultimate thinness is a promising route to unveil new physical phenomena, and potentially improve the performance of devices. Among recent 2D materials, analogs of graphene, the group IV elements have attracted much attention for their unexpected and tunable physical properties. Depending on the growth conditions and substrates, several structures of silicene, germanene, and stanene can be formed. Here, we report the synthesis of a Kagome-like lattice of silicene on aluminum (111) substrates. We provide evidence of such an exotic 2D Si allotrope through scanning tunneling microscopy (STM) observations, high-resolution core-level (CL) and angle-resolved photoelectron spectroscopy (ARPES) measurements, along with Density Functional Theory calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.