Abstract
Reducing sugar, 2-deoxy-D-ribose (dRib), produces reactive oxygen species through autoxidation and protein glycosylation and causes osteoblast dysfunction. Kaempferol, a natural flavonoid, was investigated to determine whether it could influence dRib-induced cellular dysfunction and oxidative cell damage in the MC3T3-E1 mouse osteoblastic cell line. Osteoblastic cells were treated with 30 mM dRib in the presence or absence of kaempferol (10(-9)-10(-5) M) and markers of osteoblast function and lipid peroxidation were subsequently examined. Kaempferol (10(-9)-10(-5) M) significantly inhibited the dRib-induced decrease in growth of MC3T3-E1 osteoblastic cells. In addition, treatment with kaempferol resulted in a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells. Treatment with kaempferol increased osteoprotegerin (OPG) secretion and decreased malondialdehyde (MDA) contents of MC3T3-E1 osteoblastic cells in the presence of 30 mM dRib. Taken together, these results suggest that kaempferol inhibits dRib-induced osteoblastic cell damage and may be useful for the treatment of diabetes-related bone disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.