Abstract

Ethnopharmacological relevanceAntidesma acidum Retz, a perennial herb is known for its anti-diabetic potential among the traditional health care providers of the tribal communities of Manipur, India. Scientific validation of the ancient knowledge on traditional use of this plant with the help of modern tools and techniques can promote further research and its use in health care. Aim of the studyType 2 Diabetes (T2D) is a complex metabolic disorder and linked with hyperglycemia occurring from insufficiency in insulin secretion, action, or both. The aim of this study was to scientifically validate the traditional myth behind the uses of this plant material against diabetes. More specifically, it was aimed to determine the effect of methanolic extract of A. acidum leaves and/or any of its bioactive phytochemical(s), in enhancing insulin sensitization and subsequently stimulating the insulin signaling cascade of glucose metabolism. Materials and methodsMethanol was used for extraction from the leaf powder of A. acidum followed by bioactivity guided fractionation and isolation of most active component. Biological evaluation was performed to determine the glucose uptake ability against insulin resistance in skeletal muscle (L6) cells. To understand the detailed mechanism of actions of the purified compound, several molecular biology and structural biology experiments such as Western blot, siRNA transfection assay and molecular docking study were performed. Results and discussionBioactivity guided isolation of pure compound and spectral data analysis led us to identify the active component as Kaempferol 3-O-rutinoside (KOR) for the first time from the leaf of A. acidum. Over expression of NAD-dependent histone deacetylase, Sirtuin 1 (SIRT1) was observed following KOR treatment. SIRT1 plays an important role in the metabolic pathway and over expression of SIRT implies that it involves in insulin signaling directly or indirectly. Molecular docking and simulation study showed the strong involvement between KOR and SIRT1.Treatment with KOR resulted in significant over expression of SIRT1followed by upregulation of insulin-dependent p-IRS, AKT and AMPK signaling molecules, and stimulation of the GLUT4 translocation, which ultimately enhanced the glucose uptake in sodium palmitate-treated insulin resistant L6 myotubes. Further, the effect of KOR on IRS1, AKT and AMPK phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. ConclusionOverall, the results of this study suggest that Kaempferol 3-O-rutinoside is the active component presents in the leaf of A. acidum which increases glucose consumption by inducing SIRT1 activation and consequently improves insulin sensitization. These results may find future applications in drug discovery research against T2DM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call