Abstract
Purpose: Cadmium (Cd) is a toxic metal that seriously threatens human health due to environmental pollution, is widely used in industry and agriculture, and causes oxidative stress and tissue damage. This study aims to examine the effect of royal jelly (RJ) on oxidative status and telomerase enzyme activity in tissue damage induced by Cd.
 Materials and Methods: The experimental design was made with 6 rats in each group. A total of 6 groups were created: control group, Cd group, 250 mg/kg RJ group, Cd + 250 mg/kg RJ group, 400 mg/kg RJ group, Cd + 400 mg/kg RJ group. In the study, total oxidant status and total antioxidant status in blood serum were investigated by colorimetric method, and telomerase enzyme activity in ovarian tissue was investigated by ELISA method.
 Results: Cd caused an increase in oxidative capacity (23.80 ± 2.4) and a significant decrease was determined after RJ applications compared to the control group. After RJ application, the best total antioxidant response was observed in the 250 mg/kg RJ and Cd + 250 mg/kg RJ groups. Cd significantly reduced telomerase enzyme activity (0.90 ± 0.13). RJ administered for treatment after Cd application increased telomerase levels up to the control level (1.40 ± 0.05). The best treatment response was observed in the Cd + 250 mg/kg RJ group (1.42 ± 0.05).
 Conclusion: Cd causes oxidative stress and that RJ may have curative effects by increasing the antioxidant capacity and telomerase enzyme activity RJ is a promising natural product and can contribute to recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.