Abstract
A streamlined derivation of the Kac-Ward formula for the planar Ising model's partition function is presented and applied in relating the kernel of the Kac-Ward matrices' inverse with the correlation functions of the Ising model's order-disorder correlation functions. A shortcut for both is facilitated by the Bowen-Lanford graph zeta function relation. The Kac-Ward relation is also extended here to produce a family of non planar interactions on $\mathbb{Z}^2$ for which the partition function and the order-disorder correlators are solvable at special values of the coupling parameters/temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.