Abstract

A Ka-band Huygens antenna array with extremely high aperture efficiency (AE) and low sidelobe levels is reported for 5G millimeter-wave (mm-wave) wireless applications. The basic array element is an innovative Huygens subarray consisting of two open rectangular waveguides that form an aperture consisting of a 1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 2 set of orthogonal, tightly coupled electric and magnetic elements separated by a virtual gap that are balanced, in- phase, and radiate Huygens cardioid patterns. A larger 8 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times16$ </tex-math></inline-formula> element array is then realized with 64 of these 1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> 2 subarrays. With excitations of equal amplitude, the full broadside-radiating array achieves an AE up to 97.5% in the operating bandwidth, which is very close to the 100% limit associated with an ideal uniform aperture distribution. Moreover, a highly efficient and compact feed network with tapered-amplitude and in- phase excitations from the array center to its edges is designed to achieve sidelobe and backlobe levels less than −20 dB. The −10 dB impedance bandwidth covers 26.7–29.65 GHz, and the peak realized AE (RAE) reaches 82%. A full-aluminum array prototype was fabricated with standard machining processes and tested. The measured performance characteristics agree well with their simulated values, confirming the efficacy of their designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call