Abstract
This paper describes the design procedure and measurement results of a single-layer low-cost, and wideband frequency scanning antenna, which exhibits a nearly symmetrical beam-steering around broadside direction. The measured antenna bandwidth ranges from 27.5 to 40 GHz, which covers most of the Ka-band. In addition, the antenna main beam scans from − 52° to + 42° as the frequency sweeps from 27.5 to 36.5 GHz, showing 94° beam-steering range. At the center frequency of 32 GHz, the beam points to the broadside direction. The measured radiation patterns verify that the beam-pointing error is less than 2° over the scanning range. Furthermore, the measured gain for a 10-cell structure with 6-cm length, varies from 4 to 11 dBi from 27.5 to 36.5 GHz, which is in very good agreement with simulation. The proposed antenna is scalable for designing antennas at different center frequencies or with a desired gain or beamwidth, for different applications such as low-cost millimeter-wave imaging and 5G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Infrared, Millimeter, and Terahertz Waves
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.