Abstract

K1 killer toxin is a secreted, pore-forming protein that kills sensitive yeast cells. The heterodimeric toxin is processed from a precursor in the Golgi, and has allowed identification of the KEX2- and KEX1-encoded proteases. The toxin binds to a glucan receptor on the cell wall of target yeast, and mutational analysis implicates both the alpha- and beta-toxin subunits in receptor binding. Toxin-resistant mutants with altered cell-wall glucans have helped to outline a pathway of assembly of these polysaccharides. Patch-clamp technology has demonstrated the nature of the lethal channel in toxin-treated plasma membranes. The hydrophobic alpha-subunit-encoding region is the site of all mutations affecting channel formation. Immunity to the toxin is conferred by the toxin precursor, and immunity mutations map to the region encoding the alpha subunit. The precursor probably competes with the toxin to prevent channel formation in toxin-producing cells, but the basis of this remains unknown. This toxin/immunity system has a domain structure that differs from that of other characterized toxins and has no known homologues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.