Abstract

Let G be a graph with |V (G)| = p and |E (G)| = q and f : V (G) → {k, k+1, k+2,..., p+q+k − 1 } be an one-to-one function. The induced edge labeling f ∗, for a vertex labeling f is defined by f ∗(e) = for all e = uv ∈ E(G) is bijective. If f(V (G)) ∪ {f ∗(e) : e ∈ E(G)} = {k, k+1, k+2,..., p+q+k − 1}, then f is known as a k-super cube root cube mean labeling. If such labeling exists, then G is a k-super cube root cube mean graph. In this paper, I prove that Tn ʘ K1, A(Tn) ʘ K1, A(Tn) ʘ 2K1, A(Qn) ʘ K1, Pn ʘ K1,2 and Pn ʘ K1,3 are k-super cube root cube mean graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.