Abstract
The natural attenuation of petroleum hydrocarbons is inseparable from the action of microorganisms, while the degradation methods and ecological strategies of microorganisms in petroleum-contaminated aquifers are still under debate. In the present study, 16 S rRNA sequencing and quantitative real-time polymerase chain reaction were used to assess the potential microbial degradation of petroleum hydrocarbons, and the ecological strategy of microorganisms under petroleum stress was analyzed through a co-occurrence network. The results showed that the microbial community in sediments exhibit higher efficiency and stability and stronger ecological function than that in groundwater. Keystone species coordinated with the community to execute ecosystem processes and tended to choose a K-strategy to survive, with the aquifer sediment being the main site of petroleum hydrocarbon degradation. Under natural conditions, the presence of petroleum hydrocarbons at concentrations higher than 126 μg kg-1 and 5557 μg kg-1 was not conducive to the microbial degradation of polycyclic aromatic hydrocarbons and alkanes, respectively. These results can be used as a reference for an enhanced bioremediation of contaminated groundwater. Overall, these findings provide support to managers for developing environmental management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.