Abstract

To accelerate the design of (under- or oversampled) multidimensional parallel transmission pulses. A k-space domain parallel transmission pulse design algorithm was proposed that produces a sparse matrix relating a complex-valued target excitation pattern to the pulses that produce it, and can be finely parallelized. The algorithm was applied in simulations to the design of 3D SPINS pulses for inner volume excitation in the brain at 7 Tesla. It was characterized in terms of the dependence of computation time, excitation error, and required memory on algorithm parameters, and it was compared to an iterative spatial domain pulse design method in terms of computation time, excitation error, Gibbs ringing, and ability to compensate off-resonance. The proposed algorithm achieved approximately 80% faster pulse design compared to the spatial domain method with the same number of parallel threads, with the tradeoff of increased excitation error and RMS RF amplitude. It reduced the memory required to store the design matrix by 99% compared to a full matrix solution. Even with a coarse design grid, the algorithm produced patterns that were free of Gibbs ringing. It was similarly sensitive to k-space undersampling as the spatial domain method, and was similarly capable of compensating for off-resonance. The proposed k-space domain algorithm accelerates and finely parallelizes parallel transmission pulse design, with a modest tradeoff of excitation error and RMS RF amplitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call