Abstract

Two kinds of wildlife habitat studies can be distinguished in the literature: hindcasting and forecasting studies. Hindcasting studies aim to emphasize among a large set of habitat variables those that are of interest for the focus species, whereas forecasting studies are intended to predict habitat selection according to a small number of habitat variables for a given area. We provide here a new analytical tool which relies on the concept of ecological niche, the K-select analysis, for hindcasting studies of habitat selection by animals using radio-tracking data. Each habitat variable defines one dimension in the ecological space. For each animal, the difference between the vector of average available habitat conditions and the vector of average used conditions defines the marginality vector. Its size is proportional to the importance of habitat selection, and its direction indicates which variables are selected. By performing a non-centered principal component analysis of the table containing the coordinates of the marginality vectors of each animal (row) on the habitat variables (column), the K-select analysis returns a linear combination of habitat variables for which the average marginality is greatest. It is a synthesis of variables which contributes the most to the habitat selection. As with principal component analysis, the biological significance of the factorial axes is deduced from the loading of variables. An example is provided: habitat selection by wild boar is studied in a Mediterranean habitat using the K-select analysis. The numerous advantages of the analysis (a large number of variables that can be included, individual variability in habitat selection taken into account, a lack of too strict underlying hypotheses) make it a powerful approach in radio-tracking studies designed to identify habitat variables that are selected by animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.