Abstract

AbstractFine grained rodingite‐like rocks containing epidote, clinozoisite, garnet, chlorite, phengite and titanite occur within antigorite serpentinite boudins from the high‐pressure metamorphic Maksyutovo Complex in the Southern Urals. Pseudomorphs after lawsonite, resorption of garnet by chlorite and phengite and stoichiometry suggest the reaction lawsonite + garnet + K‐bearing fluid → clinozoisite + chlorite + phengite, and define a relic assemblage of lawsonite + garnet + chlorite + titanite ± epidote as well as a later post‐lawsonite assemblage of clinozoisite + phengite + chlorite + titanite. The reaction lawsonite + titanite → clinozoisite + rutile + pyrophyllite + H2O delimits the maximum stability of former lawsonite + titanite to pressures >13 kbar. P–T conditions of 18–21 kbar/520–540 °C result, if the average chlorite, Mg‐rich garnet rim and average epidote compositions are used as equilibrium compositions of the former lawsonite assemblage. These estimates indicate a similar depth of formation but lower temperatures to those recorded in nearby eclogites. The metamorphic conditions of the lawsonite assemblage are considerably higher than previously suggested and, together with published structural data, support a model in which a normal fault within the Maksyutovo complex acted as the major transport plane of eclogite exhumation.The maximum Si content of phengite and minimum Fe content in clinozoisite constrain the metamorphic conditions of the later pseudomorph assemblage to be >4.5 kbar and <440 °C. Rb–Sr isotopic dating of the pseudomorph assemblage results in a formation age of 339 ± 6 and 338 ± 5 Ma, respectively. These results support the recent exhumation models for this complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.