Abstract
A benzenoid system (or hexagonal system) H is said to be k-resonant if, for 1 < or = t < or = k, any t disjoint hexagons of H are mutually resonant; that is, there is a Kekule structure (or perfect matching) K of H such that each of the k hexagons is an K-alternating hexagon. A connected graph G is said to be k-cycle resonant if, for 1 < or = t < or = k, any t disjoint cycles in G are mutually resonant. The concept of k-resonant benzenoid systems is closely related to Clar's aromatic sextet theory, and the concept of k-cycle resonant graphs is a natural generalization of k-resonant benzenoid systems. Some necessary and sufficient conditions for a benzenoid system (respectively a graph) to be k-resonant (respectively k-cycle resonant) have been established. In this paper, we will give a survey on investigations of k-resonant benzenoid systems and k-cycle resonant graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Information and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.