Abstract

PurposePterygium is claimed to be a benign proliferation triggered by prolonged exposure to ultraviolet radiation. The frequency of K-ras oncogene mutation, which is among the initial mutations in tumorigenesis, is evaluated in this study.Patients and methodsIn this prospective randomized clinical, trial pterygium tissues and normal conjunctiva tissue specimens are obtained from the superotemporal quadrant of patients who underwent primary pterygium excision with autograft transplantation. DNA extraction from tissues was performed using the QIAamp DNA FFPE tissue kit. A PCR reaction was performed to amplify sequences containing codons 12, 13, and 61 of the K-ras gene in DNA. These PCR products then underwent the 'pyrosequencing' procedure for mutations at these codons.ResultsPterygium and normal conjunctival tissue samples of 25 patients (10 females, 15 males) were evaluated in the study. The mean age of the patients was 54.54±13.13 years. Genetic analysis revealed no K-ras mutations in normal conjunctival tissues, whereas pterygium tissues of the same cases demonstrated mutation at codon 12 in one case and mutations at codon 61 in seven cases, which was statistically significant (P<0.05). The point missense mutations at codon 61 were glutamine to arginine (Glu61Arg CAA>CGA) in four cases and glutamine to leucine (Glu61Leu CAA>CTA) in three cases.ConclusionThe significantly higher frequency of codon 61 mutation of the ras oncogene in primary and bilateral pterygium specimens compared with normal conjunctiva supports the tumoral origin of pterygium, and thus set the stage for research into a targeted therapy for pterygium with better outcomes than surgical excision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call