Abstract
For a graph G=(V,E) and a set S⊆V(G) of a size at least 2, a path in G is said to be an S-path if it connects all vertices of S. Two S-paths P1 and P2 are said to be internally disjoint if E(P1)∩E(P2)=∅ and V(P1)∩V(P2)=S; that is, they share no vertices and edges apart from S. Let πG(S) denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity πk(G) of G is then defined as the minimum πG(S), where S ranges over all k-subsets of V(G). In this paper, we study the k-path-connectivity of the complete balanced tripartite graph Kn,n,n and obtain πkKn,n,n=2nk−1 for 3≤k≤n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.