Abstract
Summary We show that when estimating a non-parametric regression model, the k-nearest-neighbour non-parametric estimation method has the ability to remove irrelevant variables provided one uses a product weight function with a vector of smoothing parameters, and the least-squares cross-validation method is used to select the smoothing parameters. Simulation results are consistent with our theoretical analysis and show that the performance of the k-nn estimator is comparable to the popular kernel estimator; and it dominates a non-parametric series (spline) estimator when there exist irrelevant regressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.