Abstract

The aim of an automated Electrocardiogram (ECG) delineation system is the reliable detection of the characteristic waveforms and determination of peaks and limits of individual QRS-complex, P- and T-waves. In this paper, a classical statistical pattern recognition algorithm characterized with high accuracy and stability, i.e., K-Nearest Neighbour (KNN) has been proposed for locating the fiducial points along with their waveform boundaries in ECG signals. First, the QRS-complex along with its onset and offset points of each beat is detected from the ECG signal. After that P- and T-wave, relative to each QRS-complex along with their onset and offset points, are then identified using this algorithm. The feature extraction is done using the gradient of the ECG signals. The performance of the proposed algorithm has been evaluated on two standard manually annotated databases, (i) CSE and (ii) QT, and also on ECG data acquired using BIOPAC®MP100 system in laboratory settings. The results in terms of accuracy, i.e., 92.8% for CSE database obtained, clearly indicate a high degree of agreement with the manual annotations made by the referees of CSE dataset-3. Further, the delineation results of the CSE and QT database are compared with the accepted tolerances as recommended by the CSE working party. The results for ECG records acquired using the BIOPAC®MP100 system, in terms of QRS duration, heart rate, QT-interval, P-wave duration and PR-interval using KNN algorithm have also been computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.