Abstract
The more tourist objects are in an area, the more challenging it is for local governments to increase the selling value of these attractions. The government always strives to develop tourist attraction areas by prioritizing the beauty of tourist attractions. However, visitors often have difficulty in determining tourist objects that match their criteria because of the many choices. The research developed a tourist attraction recommendation system for visitors by applying machine learning techniques. The machine learning technique used was the K-Nearest Neighbor (KNN) method. Several trials were conducted with a dataset of 315 records, consisting of 11 attributes and 21 tourist attractions. Based on the dataset, the preprocessing stage was previously carried out to improve the data format by selecting data where the data were separated based on existing criteria, then calculating the closest distance and determining the value of k in the KNN method. The results are divided into five folds for each classification method. The highest system accuracy obtained at KNN is 78% at k=1. It shows that the KNN method can provide recommendations for three tourist attraction classes in Bangkalan. Applying the KNN method in the recommendation system determines several alternative tourist objects that tourists can visit according to their criteria in natural, cultural, and religious tourist objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ComTech: Computer, Mathematics and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.