Abstract

Phishing causes many problems in business industry. The electronic commerce and electronic banking such as mobile banking involves a number of online transaction. In such online transactions, we have to discriminate features related to legitimate and phishing websites in order to ensure security of the online transaction. In this study, we have collected data form phish tank public data repository and proposed K-Nearest Neighbors (KNN) based model for phishing attack detection. The proposed model detects phishing attack through URL classification. The performance of the proposed model is tested empirically and result is analyzed. Experimental result on test set reveals that the model is efficient on phishing attack detection. Furthermore, the K value that gives better accuracy is determined to achieve better performance on phishing attack detection. Overall, the average accuracy of the proposed model is 85.08%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.