Abstract

With the advent of the big data era, it is vital to explore the information involved in this type of data. With the continuous development of higher education, the K-means clustering algorithm is widely used to analyze students’ academic data. However, a significant drawback of this method is that it is seriously affected by initial centroids of clustering and easily falls into local optima. Motivated by the fact that the chaos and swarm intelligence algorithm are frequently combined, we propose an approach for data clustering by Memristive Chaotic Sparrow Search Algorithm (MCSSA) in this paper. First, we introduce a memristive chaotic system, which has a property of conditional symmetry. We use the sequences generated by the memristive chaotic system to initialize the location of the sparrows. Then, MCSSA is applied before K-means for finding the optimal locations in the search space. Those locations are used as initial cluster centroids for the K-means algorithm to find final data clusters. Finally, the improved clustering algorithm is applied to the analysis of college students’ academic data, demonstrating the value and viability of the approach suggested in this paper. Through empirical research, it is also confirmed that this method can be promoted and applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.