Abstract
클러스터링 기법은 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화 하는 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 또한 초기 클러스터 중심이 임의로 설정되기 때문에 클러스터링 결과가 편차가 심하다. 본 논문에서는 클러스터링에 소요되는 시간을 줄이고 안정적인 클러스터링을 하기 위해 초기 클러스터 중심 선정 방법을 삼각형 높이를 이용하는 방법을 제안하고 비교 실험해 봄으로서 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다. 실험결과로 평균 총소요시간을 보면 최대평균거리를 이용하는 방법은 기존 방법에 비해서 17.9% 감소하였고, 제안한 방법은 38.4% 감소하였다. Clustering method is divided into hierarchical clustering, partitioning clustering, and more. K-Means algorithm is one of partitioning clustering and is adequate to cluster so many documents rapidly and easily. It has disadvantage that the random initial centers cause different result. So, the better choice is to place them as far away as possible from each other. We propose a new method of selecting initial centers in K-Means clustering. This method uses triangle height for initial centers of clusters. After that, the centers are distributed evenly and that result is more accurate than initial cluster centers selected random. It is time-consuming, but can reduce total clustering time by minimizing the number of allocation and recalculation. We can reduce the time spent on total clustering. Compared with the standard algorithm, average consuming time is reduced 38.4%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Society for Internet Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.