Abstract

AbstractTo improve the compatibility of a k–l based hybrid LES/RANS approach, a controllable transitional zone is introduced to bridge the RANS and LES zones. This allows blending of the very different modelled turbulence length scales in these regions. To obtain a smooth variation of the length scales and transitional zone parameters different weighting functions are proposed. Results show the ‘RANS’ region has significant coherent unsteadiness. For Unsteady RANS (URANS) theoretical correctness, a favourable spectral gap between the modelled and resolved scales is required. The use of unsteadiness damping and time step filtering to ensure this is explored. Approaches are tested for a plane channel flow and the flow over a matrix of surface mounted cubes. The capability of the new hybrid LES/RANS method in improving heat transfer prediction in a conjugate heat transfer problem is examined. Numerical tests show that, compared to the RANS simulation, the proposed hybrid LES/RANS scheme performs well for the flow with large scale unsteadiness. It is also effective for improving the prediction of heat transfer. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.