Abstract

In this article, a framework is presented that allows the systematic derivation of planar edge-to-edge k-isocoronal tilings from tile-s-transitive tilings, s ≤ k. A tiling {\cal T} is k-isocoronal if its vertex coronae form k orbits or k transitivity classes under the action of its symmetry group. The vertex corona of a vertex x of {\cal T} is used to refer to the tiles that are incident to x. The k-isocoronal tilings include the vertex-k-transitive tilings (k-isogonal) and k-uniform tilings. In a vertex-k-transitive tiling, the vertices form k transitivity classes under its symmetry group. If this tiling consists of regular polygons then it is k-uniform. This article also presents the classification of isocoronal tilings in the Euclidean plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.