Abstract

The intrinsic physical and chemical properties of materials are largely governed by the bonding and electronic structures of their fundamental building units. The majority of cathode materials contain octahedral TMO6 (TM = transition metal), which dominates the redox chemistry during electrochemical operation. As a less symmetric form of TMO6 , the trigonal prismatic geometry is not a traditionally favored coordination configuration as it tends to lose the crystal-field stabilization energy and thus generate large ligand repulsion. Herein, a K-ion battery cathode design, K2 Fe(C2 O4 )2 , is shown​, where the TMO6 trigonal prism (TP) is not only electrochemically active but stable enough to allow for excellent cycling stability. Detailed synchrotron X-ray absorption spectroscopy measurements reveal the evolution of localized fine structure, evidencing the electrochemical activity, reversibility, and stability of the TP motif. The findings are expected to expand the toolbox for the rational design of electrode materials by taking advantage of TP as a structural gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.