Abstract

Let $H$ be a digraph possibly with loops, $D$ a digraph without loops, and $\rho : A(D) \rightarrow V(H)$ a coloring of $A(D)$ ($D$ is said to be an $H$-colored digraph). If $W=(x_{0}, \ldots , x_{n})$ is a walk in $D$, and $i \in \{ 0, \ldots , n-1 \}$, we say that there is an obstruction on $x_{i}$ whenever $(\rho(x_{i-1}, x_{i}), \rho (x_{i}, x_{i+1})) \notin A(H)$ (when $x_{0} = x_{n}$ the indices are taken modulo $n$). We denote by $O_{H}(W)$ the set $\{ i \in \{0, \ldots , n-1 \} :$ there is an obstruction on $x_{i} \}$. The $H$-length of $W$, denoted by $l_{H}(W)$, is defined by $|O_{H}(W)|+1$ whenever $x_{0} \neq x_{n}$, or $|O_{H}(W)|$ in other case. A $(k, H)$-kernel of an $H$-colored digraph $D$ ($k \geq 2$) is a subset of vertices of $D$, say $S$, such that, for every pair of different vertices in $S$, every path between them has $H$-length at least $k$, and for every vertex $x \in V(D) \setminus S$ there exists an $xS$-path with $H$-length at most $k-1$. This concept widely generalize previous nice concepts as kernel, $k$-kernel, kernel by monochromatic paths, kernel by properly colored paths, and $H$-kernel. In this paper, we will study the existence of $(k,H)$-kernels in interesting classes of digraphs, called nearly tournaments, which have been large and widely studied due its applications and theoretical results. We will show several conditions that guarantee the existence of $(k,H)$-kernel in tournaments, $r$-transitive digraphs, $r$-quasi-transitive digraphs, multipartite tournaments, and local tournaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.