Abstract

EPMA analyses and K-Ar age determinations were carried out on phengite in pelitic schist from the Sanbagawa metamorphic belt of the Kanto Mountains, Central Japan. Phengite from the Sanbagawa pelitic schist in the Kanto Mountains generally occurs as aggregates of fine-grained crystals. It is extremely fine-grained in domains adjacent to relatively rigid garnet and albite porphyroblasts. This suggests that deformation-induced grain-size reduction took place in phengite during the ductile deformation accompanying the exhumation of the host schists. EPMA analysis shows that phengite is chemically heterogeneous at the thin-section scale, suggesting that it formed during retrograde metamorphism in restricted equilibrium domains. The retrograde chemical reaction was promoted by the ductile deformation. K-Ar ages of phengite get younger from the Southern Unit (82 Ma) to the Northern Unit (58 Ma) in the Kanto Mountains. The age range is similar to that in Central Shikoku. The older schists occur in the higher metamorphic grade zone in Central Shikoku and in the lower-grade zone in the Kanto Mountains. The thermal structures in Central Shikoku are inverted, so that the highest-grade zone occurs in the upper or middle parts of the apparent stratigraphic succession. In contrast, the Kanto Mountains have a normal thermal structure: the higher-grade zone is in the lower part of the apparent stratigraphic succession. The different tectonic features in exhumation produced the two contrasting age-temperature-structure relations at the western side of Sanbagawa belt in Central Shikoku and the eastern end of the Sanbagawa belt in the Kanto Mountains that are 800 km distant from each other. Namely, the western Sanbagawa belt in Central Shikoku underwent longer ductile deformation during the exhumation than the eastern Sanbagawa belt in the Kanto Mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call