Abstract
Partial order reduction techniques are successfully used for various settings in planning, such as classical planning with A* search or with decoupled search, fully-observable non-deterministic planning with LAO*, planning with resources, or even goal recognition design. Here, we continue this trend and show that partial order reduction can be used for top-quality planning with K* search. We discuss the possible pitfalls of using stubborn sets for top-quality planning and the guarantees provided. We perform an empirical evaluation that shows the proposed approach to significantly improve over the current state of the art in unordered top-quality planning. The code is available at https://github.com/IBM/kstar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Symposium on Combinatorial Search
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.