Abstract

A k 0-RNAA procedure was developed to determine 129I in a mixed resin sample. CH4 extraction and (NH4)2SO3 back-extraction were used to separate 129I in ashed samples. The 129I target sample for irradiation in the reactor was prepared by heating the (NH4)2SO3 back-extraction solution to reduce its volume and then to dry it in a quartz ampoule. No MgO and LiOH were needed during the target sample preparation. After irradiation, the nuclide 130I was purified by combining hydrated antimony pentoxide column and CH4 extraction separations. A k-factor was determined for the reaction of 127I (n, 2n) 126I and used for iodine chemical yield determination. The apparent 129I concentrations of five nuclear reaction interferences were calculated. The relative standard deviation of three 129I determinations was found to be 3.5 %. The 129I content in the analyzed resin was found to be 1.36 × 10−9 g/g (8.63 × 10−3 Bq/g) with a relative uncertainty of 9.1 %. The detection limit of 129I was calculated to be 7.4 × 10−13 g (4.7 × 10−6 Bq) in a k 0-RNAA of a blank sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.