7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3847/2041-8213/acdfca
Copy DOIJournal: The Astrophysical Journal Letters | Publication Date: Jul 1, 2023 |
Citations: 8 | License type: cc-by |
Outflows and winds launched from young stars play a crucial role in the evolution of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenomena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec integral field unit observations of atomic and H2 lines from 1 to 5.1 μm toward the low-mass protostar TMC1A. For the first time, a collimated atomic jet is detected from TMC1A in the [Fe ii] line at 1.644 μm along with corresponding extended H2 2.12 μm emission. Toward the protostar, we detected spectrally broad H i and He i emissions with velocities up to 300 km s−1 that can be explained by a combination of protostellar accretion and a wide-angle wind. The 2 μm continuum dust emission, H i, He i, and O i all show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars; in this case, a previously undetected atomic wind and ionized jet in a well-known outflow.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.