Abstract

Juxtanodin (JN, also known as ermin) was initially identified as an actin cytoskeleton-related oligodendroglial protein in the rat central nervous system. It was subsequently also found in the rat olfactory neuroepithelium, especially at the apical junctional belt of the sustentacular cells. We further examined JN expression and functional roles in the retina using fluorescence histochemistry, confocal microscopy, immuno-electron microscopy, molecular biology, and cell culture. Prominent JN expression was found in the photoreceptor-supporting retinal pigment epithelium (RPE), especially in a zone corresponding to the apices of RPE cells, at the roots of the RPE microvilli, and at the base of RPE cells next to the Bruch's membrane. Partial co-localization of JN immunoreactivity with F-actin (labeled with phalloidin) was observed at the apices and bases of RPE cells. No JN was detected in other cell types of the retina. In cultured human RPE cell line ARPE-19, expression of extrinsic JN up-regulated formation of actin cytoskeleton stress fibers, caused redistribution of more F-actin fibers to the cell periphery, and promoted spreading/enlargement of transfected cells. These findings suggest possible roles of JN in RPE molecular transport, phagocytosis and formation of outer blood-retinal barrier, or possible involvement of JN expression perturbations in pathogenesis of such retinal disorders as proliferative vitreoretinopathy and age-related macular degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.