Abstract

The functional properties of the amino terminus (NT) of the corticotropin releasing factor (CRF) receptor type 1 (R1) were studied by use of murine (m) CRFR1 and rat (r) parathyroid hormone (PTH)/parathyroid hormone-related peptide receptor (PTH1R) chimeras. The chimeric receptor CXP, in which the NT of mCRFR1 was annealed to the TMs of PTH1R, and the reciprocal hybrid, PXC, bound radiolabeled analogues of sauvagine and PTH(3--34), respectively. Neither hybrid bound radiolabeled CRF or PTH(1--34). CRF and PTH(1--34) weakly stimulated intracellular cAMP accumulation in COS-7 cells transfected with PXC and CXP, respectively. Thus the NT is required for ligand binding and the TMs are required for agonist-stimulated cAMP accumulation. Replacing individual intercysteine segments of PXC with their mCRFR1 counterparts did not rescue CRF or sauvagine radioligand binding or stimulation of cAMP accumulation. Replacement of residues 1--31 of mCRFR1 with their PTH1R counterparts resulted in a chimeric receptor, PEC, which had normal CRFR1 functional properties. In addition, a series of chimeras (F1PEC--F6PEC) were generated by replacement of the NT intercysteine residues of PEC with their PTH1R counterparts. Only F1PEC, F2PEC, and F3PEC showed detectable CRF and sauvagine radioligand binding. All of the PEC chimeras except F5PEC increased cAMP accumulation. These data indicate that the Cys(68)(-)Glu(109) domain is important for binding and that the Cys(87)(-)Cys(102) region plays an important role in CRFR1 activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call