Abstract
Repeated early environmental deprivation is regarded as a typical paradigm to mimic the behavioral abnormalities and brain dysfunction that occur in psychiatric disorders. Previously, we reported that social isolation could disrupt prepulse inhibition (PPI) in Sprague-Dawley (SD) rats, producing the typical characteristics of a schizophrenia animal model. Based on further analysis of previous proteomic and transcriptomic data, a disrupted balance of glucose metabolism was found in the prefrontal cortex (PFC) of isolated rats. Subsequently, in the first experiment of this study, we investigated the effects of juvenile social isolation (postnatal days (PND) 21–34) on PPI and lactate levels in PND56 rats. Compared with the social rearing group, rats in the isolated rearing group showed disrupted PPI and increased lactate levels in the PFC. In the second experiment, at PND55, the model rats were acutely injected with a glycogen phosphorylase inhibitor (4-dideoxy-1,4-imino-darabinitol, DAB) or control saline in the bilateral PFC. Our data showed that acute DAB administration (50 pmol, 0.5 μl) significantly improved the disrupted PPI and decreased the levels of oxidative phosphorylation (OXPHOS)-related mRNAs as well as lactate. In summary, our results suggested that excess astrocytic lactate production was involved in the impairment of auditory sensory gating of isolated rats, which may contribute to the metabolic pathogenesis of schizophrenia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.